Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120779, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599083

RESUMO

Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.

2.
Anat Rec (Hoboken) ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37746926

RESUMO

The vertebral anatomy of snakes has attracted the attention of researchers for decades and numerous studies have been made for extinct and extant species. The present study investigated the morphological variations in vertebral structure among different vertebral regions in the dice snake Natrix tessellata, and provides a detailed anatomical and microstructural description of the vertebral column. Vertebrae were analyzed and compared using x-ray imaging, scanning electron microscopy, micro-computed tomography, and histological techniques. The vertebral column of N. tessellata is divided into three regions: precloacal, cloacal, and caudal. Unlike in many other tetrapods and snakes, the atlas of N. tessellata does not form a complete ring. It has a flat and roughly trilobate shape with a prominent middle lobe. The axis has two hypapophyses. The anterior precloacal region of the vertebral column has longer and more paddle-shaped hypapophyses, distinguishing it from the posterior and mid-trunk vertebrae. The anterior cloacal vertebrae have a short hypapophysis rather than a hemal keel, and the lymphapophysis extends outward, curving slightly. The cotyle and condyle of the caudal vertebrae exhibited a closer resemblance to a rounded shape, while the pleurapophysis extended ventrolaterally and curved ventrally near its distal end. Paired hemapophyses were present at the posterior-most point of the centrum instead of a hypapophysis. In light of previous fossil findings, our anatomical comparison of the vertebral and transverse processes indicates that the extant Natrix has a more flexible and less rigid spine than its ancestors. Overall, the vertebral differences among snake anatomical regions or taxa are a testament to the remarkable diversity and adaptability of these fascinating reptiles.

3.
J Dev Biol ; 11(1)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36810457

RESUMO

The reptile skin is a barrier against water loss and pathogens and an armor for mechanical damages. The integument of reptiles consists of two main layers: the epidermis and the dermis. The epidermis, the hard cover of the body which has an armor-like role, varies among extant reptiles in terms of structural aspects such as thickness, hardness or the kinds of appendages it constitutes. The reptile epithelial cells of the epidermis (keratinocytes) are composed of two main proteins: intermediate filament keratins (IFKs) and corneous beta proteins (CBPs). The outer horny layer of the epidermis, stratum corneum, is constituted of keratinocytes by means of terminal differentiation or cornification which is a result of the protein interactions where CBPs associate with and coat the initial scaffold of IFKs. Reptiles were able to colonize the terrestrial environment due to the changes in these epidermal structures, which led to various cornified epidermal appendages such as scales and scutes, a beak, claws or setae. Developmental and structural aspects of the epidermal CBPs as well as their shared chromosomal locus (EDC) indicate an ancestral origin that gave rise to the finest armor of reptilians.

4.
Naturwissenschaften ; 109(2): 22, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377081

RESUMO

Melanism is a polymorphic phenotype caused by the number and density of melanocyte cells producing melanin pigment in the skin and widely observed in snakes. The frequency of this coloration in populations is associated with its opposing fitness consequences and can be closely related to species-specific characteristics such as sex, reproduction, and nutrition, as well as environmental factors such as climate and geography. Although melanism is frequently seen in snakes, the skin structure of melanistic individuals has not been studied in detail. Also, the impact of the black phenotype on habitat use has not yet been clarified in this species. Here, we show a comparison of typical and melanistic morphs of the grass snake Natrix natrix population of Anatolia for the first time in terms of skin structure, habitat, and sex. We found that melanistic individuals, in which partial melanism is more abundant than total melanism, comprise 13% of the population. Melanocyte area of the skin is 1.4 times greater in melanistic compared to the typical individuals. The epidermis is thicker in typical morphs by 7.7%. Hinge regions between adjacent scales do not bare melanocytes in both morphs. As for habitat utilization, we revealed that melanistic individuals of the Isikli population tend to occur closer to water bodies than typical ones. Our data provide a new perspective on poorly known aspects of color polymorphism and habitat use of widely distributed, semi-aquatic Natrix natrix.


Assuntos
Colubridae , Melanose , Animais , Ecossistema , Pigmentação , Pele
5.
Anat Rec (Hoboken) ; 305(12): 3543-3608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35225424

RESUMO

The skin is a barrier between the internal and external environment of an organism. Depending on the species, it participates in multiple functions. The skin is the organ that holds the body together, covers and protects it, and provides communication with its environment. It is also the body's primary line of defense, especially for anamniotes. All vertebrates have multilayered skin composed of three main layers: the epidermis, the dermis, and the hypodermis. The vital mission of the integument in aquatic vertebrates is mucus secretion. Cornification began in apmhibians, improved in reptilians, and endured in avian and mammalian epidermis. The feather, the most ostentatious and functional structure of avian skin, evolved in the Mesozoic period. After the extinction of the dinosaurs, birds continued to diversify, followed by the enlargement, expansion, and diversification of mammals, which brings us to the most complicated skin organization of mammals with differing glands, cells, physiological pathways, and the evolution of hair. Throughout these radical changes, some features were preserved among classes such as basic dermal structure, pigment cell types, basic coloration genetics, and similar sensory features, which enable us to track the evolutionary path. The structural and physiological properties of the skin in all classes of vertebrates are presented. The purpose of this review is to go all the way back to the agnathans and follow the path step by step up to mammals to provide a comparative large and updated survey about vertebrate skin in terms of morphology, physiology, genetics, ecology, and immunology.


Assuntos
Evolução Biológica , Dinossauros , Animais , Dinossauros/fisiologia , Plumas/anatomia & histologia , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia , Aves/anatomia & histologia , Mamíferos/anatomia & histologia
6.
Zootaxa ; 5224(1): 1-68, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-37044498

RESUMO

Revealing biodiversity allows the accurate determination of the underlying causes of many biological processes such as speciation and hybridization. These processes contain many complex patterns, especially in areas with high species diversity. As two of the prominent zoogeographic areas, Anatolia and Caucasus are also home to the genus Darevskia, which has a complex morphological structure and parthenogenetic speciation. Darevskia valentini and D. rudis are two largely distributed taxa of this genus, both of which have a controversial taxonomic delimitation. Here we performed both a highly detailed morphological comparison and a molecular evaluation for the populations in both species groups. The most comprehensive taxonomic revision of this complex was carried out to determine the cases where the data obtained were compatible or not with each approach. As a result of the obtained outputs, it seems that D. spitzenbergerae stat. nov., D. mirabilis stat. nov. and D. obscura stat. nov. should be accepted as the species level, this later with subspecies D. o. bischoffi comb. nov. and D. o. macromaculata comb. nov.. Also, we propose two new taxa: D. josefschmidtleri sp. nov. and D. spitzenbergerae wernermayeri ssp. nov.. It has also been shown that "lantzicyreni" subspecies belong to D. rudis instead of D. valentini. The extensive revision has contributed to subsequent studies to more accurately understand the past histories of species in the genus Darevskia.


Assuntos
Lagartos , Animais , Lagartos/classificação , Lagartos/genética , Filogenia , Ásia Ocidental , Distribuição Animal
7.
Mol Biol Rep ; 48(5): 4163-4169, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34086161

RESUMO

Revealing the genetic basis of the existence of different species living together in different geographic regions provides clarification of this phylogeographic differentiation. In this study, we investigated the population genetics and evaluated the level of genetic variation of inland and coastal populations of Mauremys and Emys in Turkey. Tissue samples of 196 terrapins were studied which were collected from syntopic coastal (Gölbent-Söke/Aydin; M. rivulata and E. orbicularis) and inland populations (Bahçesaray/Aksaray; M. caspica and E. orbicularis). DNA was isolated using the InnuPREP DNA Mini Kit. Mitochondrial DNA sequences and allelic variation at 13 microsatellite loci for Mauremys and 12 microsatellite loci for Emys were examined.  Three haplotypes were found for Emys orbicularis (Im, Ip and Iw) collected from the coastal region and two haplotypes for Emys orbicularis (Ig and Im) collected from inland. Two haplotypes were identified for M. caspica (Cmt8 and Cmt9) and three haplotypes were identified for M. rivulata (Rmt3, Rmt24 and Rmt26). Using microsatellites and the software STRUCTURE the most probable value for K was revealed as two 2 for both species. The FST value between M. rivulata and M. caspica was 0.39, and between the coastal and inland populations of E. orbicularis 0.09. It can be concluded that Emys populations tend to evolve by somehow preserving the allelic richness they have and Mauremys populations continue to differentiate so that new species emerge in the evolutionary process to reach the ideal allelic structure.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Tartarugas/classificação , Tartarugas/genética , Alelos , Animais , Evolução Molecular , Água Doce , Loci Gênicos , Variação Genética , Haplótipos , Filogeografia/métodos , Software , Turquia
8.
Mitochondrial DNA ; 24(5): 565-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23464359

RESUMO

The taxonomic situation of Anguis fragilis species is still unclear in Turkey. In order to clarify this situation, we used the DNA sequences of 16S rRNA and cytochrome b genes to analyze the phylogenetic relationship among A. fragilis populations. A total of 13 haplotypes in 16S rRNA dataset and 20 haplotypes in cytochrome b dataset were detected. Kimura 2-parameter genetic distance was found to be 0.012 for 16S rRNA and 0.026 for the cytochrome b dataset. Neighbor joining (NJ) trees were constructed to analyze phylogenetic relationship among specimens and were supported with median joining networks. Results indicate a clear genetic structuring in A. fragilis populations sampled from north of 40° north latitude of Turkey. Both mitochondrial gene sequences successfully detected the intraspecific variation among specimens of different populations. Genetic structuring, correlated with geographic distance, was found to be significant at the specimens sampled from edge populations of peripherally isolated climatic conditions.


Assuntos
Lagartos/genética , Animais , Mar Negro , Citocromos b/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Geografia , Filogenia , RNA Ribossômico 16S/genética , Turquia
9.
J Environ Biol ; 28(3): 567-70, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18380076

RESUMO

In this study, endoparasites of the Rana ridibunda specimens collected from Dalaman area, southwestern Turkey were investigated. In the intestine of 17 specimens of R. ridibunda, five different parasites, represented by three species of the trematoda (Diplodiscus sp, Pleurogenoides sp, Plagiorchis sp) and two genera of round worms (Cosmocerca sp; Foleyella sp) were recognized. The trematoda and one of the round worms were found in the rectal region whereas the other round worm species are observed in the abdominal cavity.


Assuntos
Nematoides/isolamento & purificação , Rana ridibunda/parasitologia , Dermatopatias Parasitárias/parasitologia , Dermatopatias Parasitárias/veterinária , Trematódeos/isolamento & purificação , Animais , Feminino , Intestinos/parasitologia , Masculino , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...